Three-dimensional structure of the complex between the mitochondrial matrix adenylate kinase and its substrate AMP.
نویسندگان
چکیده
Crystals of adenylate kinase from beef heart mitochondrial matrix (EC 2.7.4.10) complexed with its substrate AMP were analyzed by X-ray diffraction. The crystal structure was solved by multiple isomorphous replacement and solvent flattening at a resolution of 3.0 A. There are two enzyme-substrate molecules in the asymmetric unit. The resolution was extended to 1.9 A by model building and refinement using simulated annealing. The current R-factor is 28.4%. The model is given as a backbone tracing for residues 5-218. The enzyme can be subdivided into three domains, the relative arrangements of which differ slightly but significantly between the two crystallographically independent molecules. When compared with other adenylate kinase structures, the chain fold is similar but the observed domain arrangement differs grossly, suggesting that large parts of the enzyme move during catalysis. The observed binding site of AMP is described. Its location in conjunction with data from homologous proteins clarifies the nucleotide-binding sites of the adenylate kinases. Previous assignments of these sites derived from X-ray crystallographic and nuclear magnetic resonance analyses are discussed.
منابع مشابه
The refined structure of the complex between adenylate kinase from beef heart mitochondrial matrix and its substrate AMP at 1.85 A resolution.
The crystal structure of the complex between adenylate kinase from bovine mitochondrial matrix and its substrate AMP has been refined at 1.85 A resolution (1 A = 0.1 nm). Based on 42,519 independent reflections of better than 10 A resolution, a final R-factor of 18.9% was obtained with a model obeying standard geometry within 0.016 A in bond lengths and 3.2 degrees in bond angles. There are two...
متن کاملMolecular cloning of adenylate kinase from the human filarial parasite Onchocerca volvulus
Adenylate kinases (ADK) are ubiquitous enzymes that contribute to the homeostasis of adeninenucleotides in living cells. In this study, the cloning of a cDNA encoding an adenylate kinase from the filariaOnchocerca volvulus has been described. Using PCR technique, a 281 bp cDNA fragment encoding part ofan adenylate kinase was isolated from an O. volvulus cDNA library. Use of this fragment as a p...
متن کاملOverlap between folding and functional energy landscapes for adenylate kinase conformational change.
Enzyme function is often dependent on fluctuations between inactive and active structural ensembles. Adenylate kinase isolated from Escherichia coli (AK(e)) is a small phosphotransfer enzyme in which interconversion between inactive (open) and active (closed) conformations is rate limiting for catalysis. AK(e) has a modular three-dimensional architecture with two flexible substrate-binding doma...
متن کاملNumerical solution of base shear in high tensioned cable antenna
A finite element solution based on equevalent elements is proposed for the static and dynamic analysis of tallhigh tensioned cable antennas. To reduce high number of degrees of freedom in space frame body of a structure, a simple equivalent beam element is defined for each simulative substructure. This numerical procedure is applicable to analyze complex three dimensional assemblies of substruc...
متن کاملParticipation of N1-oxide derivatives of adenine nucleotides in the phosphotransferase activity of liver mitochondria.
The modified adenine nucleotides ATP-NO, ADP-NO, and AMP-NO were tested as potential substrates and/or inhibitors of mitochondrial phosphotransferases. ADP-NO is not recognized by the translocase system located in the inner mitochondrial membrane; however, it is rapidly phosphorylated to ATP-NO in the outer compartment of mitochondria, by way of the nucleosidediphosphate kinase (EC 2.7.4.6) rea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 29 35 شماره
صفحات -
تاریخ انتشار 1990